Search results for "Band bending"

showing 10 items of 10 documents

Hall effect and electronic structure of films

2010

Abstract Tunneling experiments have shown that in order to retain half-metallicity at room temperature not only a large gap is required but also a Fermi energy considerably distant from the minority band edges. We correlate the position of the Fermi energy in the spin minority gap obtained from band structure calculations to Hall effect experiments. As a model system we chose Co 2 Fe x Mn 1 - x Si , where the Fermi energy was calculated to move from the valence band edge of the minority states to the conduction band edge with increasing x . On high quality laser ablated epitaxial films we observe a sign change of both the normal and the anomalous Hall effect with doping. The experimental da…

Materials scienceCondensed matter physicsBand gapFermi levelFermi energyCondensed Matter PhysicsSemimetalElectronic Optical and Magnetic Materialssymbols.namesakeBand bendingsymbolsCondensed Matter::Strongly Correlated ElectronsDirect and indirect band gapsPseudogapQuasi Fermi levelJournal of Magnetism and Magnetic Materials
researchProduct

Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofibers

2016

International audience; Nanolaminates are new class of promising nanomaterials with outstanding properties. Here we explored on the tuning of structural properties and the enhancement of electronic and optical properties of 1D PAN ZnO/Al2O3 nanolaminates designed by atomic layer deposition (ALD) and electrospinning. The influence of ZnO/Al2O3 bilayer thicknesses on the fundamental properties of 1D PAN ZnO/Al2O3 nanolaminates has been investigated. Due to the quantum confinement effect, the shift of XPS peaks to higher energies has been observed. Work function of Al2O3 was mostly independent of the bilayers number, whereas the ZnO work function decreased with an increase of the bilayer numbe…

PhotoluminescenceMaterials scienceNanotechnology02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesWork functionNanomaterialsAtomic layer depositionNanolaminatesWork functionPhysical and Theoretical ChemistryelectrospinningPotential wellbusiness.industryBilayer[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyBand bendingQuantum dotatomic layer depositionOptoelectronicsphotoluminescence0210 nano-technologybusiness
researchProduct

Effects of Nid-levels on the electronic band structure of NixCd1-xO semiconducting alloys

2017

NixCd1-xO has a ∼3 eV band edge offset and bandgap varying from 2.2 to 3.6 eV, which is potentially important for transparent electronic and photovoltaic applications. We present a systematic study of the electronic band structure of NixCd1-xO alloys across the composition range. Ion irradiation of alloy samples leads to a saturation of the electron concentration associated with pinning of the Fermi level (EF) at the Fermi stabilization energy, the common energy reference located at 4.9 eV below the vacuum level. The composition dependence of the pinned EF allows determination of the conduction band minimum (CBM) energy relative to the vacuum level. The unusually strong deviation of the CBM…

Condensed matter physicsChemistryBand gapFermi levelGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSemimetalsymbols.namesakeBand bending0103 physical sciencessymbolsDirect and indirect band gaps010306 general physics0210 nano-technologyElectronic band structurePseudogapQuasi Fermi levelJournal of Applied Physics
researchProduct

Low-temperature growth of n ++-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes

2018

We report on low-resistivity GaN tunnel junctions (TJ) on blue light-emitting diodes (LEDs). Si-doped n ++-GaN layers are grown by metalorganic chemical vapor deposition directly on LED epiwafers. Low growth temperature (<800 °C) was used to hinder Mg-passivation by hydrogen in the p ++-GaN top surface. This allows achieving low-resistivity TJs without the need for post-growth Mg activation. TJs are further improved by inserting a 5 nm thick In0.15Ga0.85N interlayer (IL) within the GaN TJ thanks to piezoelectric polarization induced band bending. Eventually, the impact of InGaN IL on the internal quantum efficiency of blue LEDs is discussed.

Materials Chemistry2506 Metals and AlloysMaterials scienceHydrogenchemistry.chemical_element02 engineering and technologyChemical vapor depositionCondensed Matter Physic01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionElectrical resistivity and conductivitylaw0103 physical sciencesMaterials ChemistryElectrical and Electronic EngineeringBlue lightDiode010302 applied physicsmetalorganic chemical vapor depositionbusiness.industryElectronic Optical and Magnetic Material021001 nanoscience & nanotechnologyCondensed Matter Physicsblue light-emitting diodeElectronic Optical and Magnetic MaterialsBand bendingchemistryOptoelectronicsQuantum efficiency0210 nano-technologybusinessLight-emitting diodeGaN tunnel junction
researchProduct

Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

2016

Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond …

Materials scienceSciencePhotoelectrochemistryGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticlePhotovoltaicsddc:530Polarization (electrochemistry)PhotocurrentMultidisciplinarybusiness.industryQGeneral ChemistryPhotoelectrochemical cell021001 nanoscience & nanotechnologyFerroelectricity0104 chemical sciencesBand bendingSemiconductor0210 nano-technologybusinessNature Communications
researchProduct

Evidence of Band Bending Induced by Hole Trapping at MAPbI3 Perovskite / Metal Interface

2016

International audience; Electron injection by tunneling from a gold electrode and hole transport properties in polycrystalline MAPbI3 has been investigated using variable temperature experiments and numerical simulations. The presence of a large and unexpected band bending at the Au/MAPbI3 interface is revealed and attributed to the trapping of holes, which enhances the injection of electrons via tunneling. These results elucidate the role of volume and interface defects in state-of-the-art hybrid perovskite semiconductors.

Materials scienceCondensed matter physicsRenewable Energy Sustainability and the Environmentbusiness.industry02 engineering and technologyGeneral ChemistryTrappingElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSemiconductorBand bendingCondensed Matter::SuperconductivityElectrodeGeneral Materials Science[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsCrystalliteAtomic physics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologybusinessQuantum tunnellingPerovskite (structure)
researchProduct

Noble metal nanoparticles in organic matrix

2020

Abstract The purpose of this work is the synthesis and study of the properties of nanocomposite structures created by noble metal (silver) nanoparticles (NP's), an exciting class of materials with unique properties differ from both bulk and atomic behavior, which are self-organize in a thin organic film of copper phthalocyanine (CuPc). The structure and morphology of this material, depending on the amount of deposited silver, was studied in ultrahigh vacuum using transmission electron microscopy (TEM) and photoelectron spectroscopy (PES). Metallic atoms deposited on the surface of an organic substrate diffuse into the substrate, forming NPs with a narrow size distribution, which correlates …

NanocompositeMaterials scienceGeneral Physics and AstronomyNanoparticle02 engineering and technologySurfaces and InterfacesGeneral ChemistrySubstrate (electronics)engineering.material010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSilver nanoparticle0104 chemical sciencesSurfaces Coatings and FilmsBand bendingX-ray photoelectron spectroscopyChemical engineeringNanocrystalengineeringNoble metal0210 nano-technologyApplied Surface Science
researchProduct

B7.3 - Field Effect SnO2 Nano-Thin Film Layer CMOS-Compatible

2009

The integration of metal oxide gas sensing layers into CMOS electronic still a challenge especially due to the high operating temperatures that do not comply with silicon transistor limits , even more critical, and metal oxide annealing temperatures. External electric fields will allow control over the energy levels of the sensing layer and thus over adsorption sensitivity, consequently the interaction between gas and sensitive layer is modulated. As the absorbed gas on the surface produces a band bending, it changes conduction paths allowing gas detection through resistance measurements. With this configuration, field switch offers fast desorption and thus handling of low temperature respo…

Materials sciencebusiness.industryTransistorField effectNanotechnologylaw.inventionBand bendingSemiconductorCMOSlawElectric fieldOptoelectronicsElectronicsThin filmbusinessProceedings SENSOR 2009, Volume II
researchProduct

Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

2015

Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O-2 on the surface defect states. A model fo…

PhotoluminescencePhysics and Astronomy (miscellaneous)Analytical chemistryPhotovoltaic applicationFOS: Physical scienceschemistry.chemical_elementNanorodOxygen vacancieSettore ING-INF/01 - ElettronicaOxygensymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)ultravioletSurface defect stateDepositionPhotoluminescenceChemical-bath depositionTransient studies Surface defectsPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFermi levelDeep-level defectBand bendingnanowireschemistryZinc oxide Ambient environmentsymbolsNanorodPhotoluminescence intensitiefilmsTransient (oscillation)Resistance measurementIntensity (heat transfer)Chemical bath depositionApplied Physics Letters
researchProduct

<title>Spin-polarized electron kinetics under high-intensity picosecond excitation</title>

2003

ABSTRACT Spin-polarized electron kinetics is studied by time-resolved polarized photoemission with picosecond resolution. The re-sponse time of strained layer photocathodes is found to be in a range of a few picosecond offering an ultrafast response andhigh spin-polarization of emitted electrons. The studies of the sub-picosecond spin dynamics are facilitated in high-intensityexcitation regime when the length of the emission pulse is enlarged due to the dispersion of acceleration time and Coulombrepulsion ofthe electrons in their flight in the vacuum.Keywords: optical orientation, spin kinetics, strained semiconductor layer, time-resolved emission. 1. INTRODUCTION GaAs, layers are known to …

OpticsBand bendingSemiconductorSpin polarizationElectron capturebusiness.industryChemistryPicosecondElectronbusinessMolecular physicsUltrashort pulseActive layerSPIE Proceedings
researchProduct